钢筋混凝土结构中的砌体填充墙的拉墙筋长度:不可套用砌体结构,应按抗震设计规范13.3.3条2款:6、7度时不应小于墙长的1/5且不小于700mm,8、9度时宜沿墙全长贯通。
有些人在电算总信息中输入分布筋的配筋率为0.30%(规范要求一、二、三级剪力墙小0.25%,四级剪力墙小0.20%,为强制性条文),但实际配筋小于0.30%,这就不对了,因为竖向分布筋的配筋率会影响剪力墙的配筋计算结果(见高规7.2.8~7.2.12条)。剪力墙的竖向、横向分布筋也不必太大,如墙厚为200或250mm,纵、横向分布筋都配φ12@200双排(配筋率达0.565~0.452%)似无必要,但钢筋间距宜≤200mm,对防止剪力墙开裂有好处。
如果把设计过程视为一个数据处理过程,那么,以一个零件为例,工作能力设计只为人们提供了极为有限的数据,尽管这少量数据对于设计很重要,而零件的终几何形状,包括每一个结构的细节和所有尺寸的确定等大量工作均需在结构设计阶段完成。其次,因为零件的构形与其用途以及其它“相邻”零件有关,为了能使各零件之间彼此“适应”,一般一个零件不能抛开其余相关零件而孤立地进行构形。因此,设计者总是需要同时构形较多的相关零件(或部件)。此外,在结构设计中,人们还需更多地考虑如何使产品尽可能做到外形美观、使用性能优良、成本低、可制造性、可装配性、维修简单、方便运输以及对环境无不良影响等等。因此可以说,结构设计具有“”和“多目标”的工作特点。
一个零件、部件或产品,为要实现某种技术功能,往往可以采用不同的构形方案,而目这项工作又大都是凭着设计者的“直觉”进行的,所以结构设计具有灵活多变和工作结果多样性等特点。
对于一个产品来说,往往从不同的角度提出许多要求或限制条件,而这些要求或限制条件常常是彼此对立的。例如:高性能与低成本的要求,结构紧凑与避免干涉或足够调整空间的要求,在接触式密封中既要密封可靠又要运动阻力小的要求,以及零件既要加工简单又要装配方便的要求等等。结构设计必须面对这些要求与限制条件,并需根据各种要求与限制条件的重要程度去寻求某种“折衷”,求得对立中的统一。